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Second-harmonic wave diffraction at large depths 
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An approximation of the second-order diffraction potential is derived, for water 
waves of small amplitude incident upon a fixed body in a fluid of large depth. 
Attention is focused on the second-harmonic component of this potential, in terms 
of the fundamental incident-wave frequency, and on the particular solution of the 
inhomogeneous free-surface boundary condition with quadratic forcing by the first- 
order solution. By considering only the far-field approximation of the forcing 
function, a simple solution is derived in the near field of the body which is dominant 
when the submergence of the field point is large. The validity of this approach is 
confirmed by comparisons with two-dimensional experiments and three-dimensional 
computations. 

1. Introduction 
If water waves of small amplitude are incident upon a diffracting body, the 

resulting hydrodynamic pressure force exerted on the body includes a first-order 
component linear in the amplitude of the incident waves, and higher-order nonlinear 
components which may be derived formally by a perturbation expansion. 
Notwithstanding the assumptions of this classical approach, applications exist where 
the significance of the second-order fmce is comparable with or even greater than the 
linear component. 

For excitation at a single frequency w the second-order pressure and the resulting 
force acting on the body consist of mean components which are independent of time, 
and second-harmonic components which are oscillatory a t  the frequency 213. In a 
wave spectrum these two forces are generalized, and known respectively as the 
‘slowly varying ’ or ‘difference-frequency ’ drift forces, and the ‘sum-frequency ’ 
forces. These have obvious relevance in applications where) the body is resonant a t  
long or short periods, respectively, relative to the fundamental period of the incident 
waves. 

Recent computations for axisymmetric bodies by Eatock Taylor & Hung (1987), 
Shimada (1987), and Kim & Yue (1988, 1989) reveal that  the second-harmonic 
component of the diffraction pressure field also is particularly significant a t  large 
depths. For large offshore structures such as tension-leg platforms, which are 
restrained by taut moorings, the resulting contribution to the vertical pressure force 
and mooring loads may dominate the first-order linear component. Experimental 
evidence of the same phenomenon is presented by Johansson (1989), who studies 
two-dimensional floating breakwaters and notes that ‘ the vertical force is 
significantly contaminated by a double harmonic ’. 

Unlike the second-order mean drift force, which can be evaluated consistently 
from the first-order velocity potential, the second-harmonic force depends in part on 
the solution for the second-order potential. The principal complication of the 
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corresponding boundary-value problem, relative to  its first-order counterpart, is the 
inhomogeneous free-surface boundary condition. This results from quadratic forcing 
by the first-order solution, and can be interpreted physically as an imposed pressure 
on the free surface. In  the diffraction problem, where first-order plane progressive 
waves are incident from infinity, the quadratic forcing function persists in the far 
field, complicating the formulation and solution of the second-order potential. 

The complications associated with the second-order inhomogeneous free-surface 
condition have motivated some incomplete solutions of the second-order diffraction 
problem, in which the potential satisfies a homogeneous linear free-surface condition. 
The practical defects of these results are emphasized by Kim & Yue (1988), who show 
from an elaborate numerical solution, restricted to axisymmetric structures, that the 
dominant component of the second-harmonic vertical force is associated directly 
with the particular solution of the inhomogeneous free-surface condition. 

A useful analogy can be inferred from the simpler analysis of two-dimensional 
deep-water standing waves, where the second-order solution of the free-surface 
condition includes a second-harmonic pressure component independent of depth (cf. 
Wehausen & Laitone 1960, pp. 665-666). The same phenomenon occurs for a partial 
standing wave, resulting from wave reflection by a two-dimensional body (Ogilvie 
1983). Since the transmitted wave lacks such a component, a transition must occur 
in the horizontal direction, a t  large depths, between the O(1) pressure far from the 
body in the ‘upstream ’ reflected-wave direction, and the exponentially small 
pressure in the ‘downstream ’ transmitted-wave direction. This suggests that the 
second-harmonic pressure in the vicinity of the diffracting body may be more 
important a t  large depths than the first-order component. 

A similar result can be expected in three dimensions, where the inhomogeneous 
free-surface boundary condition forces a non-radiating second-order solution along 
the ray directly opposite to the propagation angle of the incident wave. This singular 
feature of the far-field asymptotic solution was noted by Molin (1979), and has been 
discussed extensively in connection with the appropriate statement of the second- 
order radiation condition (Mei 1983; Molin 1986). 

It is reasonable to assume that a connection exists between the far-field behaviour 
of the quadratic forcing function in the second-order free-surface condition, the slow 
rate of attenuation with depth of the resulting near-field solution, and the large 
second-harmonic forces observed in experiments and computations. Moreover, if this 
assumption is correct, it suggests that an analysis which considers only the far-field 
forcing function may lead to a relatively simple second-order solution which 
approximates the dominant second-order pressure field acting on the body. 

In the present work an asymptotic solution is developed to establish this 
connection. Assuming that the submergence of the field point beneath the fres 
surface is sufficiently large to  neglect the components of the fluid pressure which 
depend exponentially on the vertical coordinate, an asymptotic expansion is derived 
for the second-order potential in inverse powers of the vertical coordinate z. The 
leading term in this expansion is independent of z in two dimensions, and of order z-l 
in three dimensions. 

The basic analysis is first developed in $2 for two-dimensional diffraction of an 
incident plane progressive wave system by a fixed body, in a fluid of infinite depth. 
The corresponding three-dimensional analysis is presented in § 3. Finite-depth effects 
are estimated in $4, and in $5  the analysis is extended to include the sum-frequency 
force components in a pair of incident waves with different frequencies. To 
demonstrate the practical validity of this approach comparisons are made in $6  
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with the two-dimensional experiments of Johansson (1989), and with the three- 
dimensional axisymmetric numerical results of Kim & Yue (1988). 

2. Two-dimensional analysis 
If plane progressive waves of small amplitude A are diffracted by a fixed body, the 

time-harmonic components of the velocity potential can be expanded in the form 

@(x, t )  = Re (q51(x) eiWt + q5z(x) e2iwt + . . .), (1) 

where q5n = O(An). Each term in this expansion is governed by Laplace’s equation in 
the fluid domain, and satisfies a homogeneous Neumann boundary condition on the 
body surface. 

The first-order diffraction potential q51 can be expressed in the form q51 = q5: + q5:, 

is the incident-wave potential and q5: denotes the scattered potential. Here K = w2/g 
is the wavenumber, z = 0 is the plane of the free surface with the +x-axis directed 
upwards, and the +x-axis is in the direction of incident-wave propagation. Both 
components of satisfy the linear free-surface boundary condition q51z-Kq51 = 0 
on z = 0, and vanish for z+--co. 

Including terms of second order, the free-surface boundary condition can be 
expressed in the form 

4 

djtt+gGz = -2VG.VG,+~@,(G,,,+gdj2,) (2 = 0) (3) 
9 

(cf. Newman 1977, equation 6.33). Substituting (1) and retaining only the second- 
harmonic terms gives 

where the ‘ quadratic forcing function ’ q is defined in terms of the first-order solution 

q522-4Kq52 = dx) ,  (4) 

In the remainder of this Section we assume two-dimensional motions which are 
independent of the coordinate y, as would be the case if the diffracting body is 
cylindrical with its axis perpendicular to the plane xs. 

A particular solution Ql,(x,x) can be derived formally by interpreting q(z) as an 
oscillatory pressure imposed on the free surface, with the result 

(cf. Wehausen & Laitone 1960, equation 21.21). Here the first integral is over the 
domain of the free surface, excluding the portion occupied by the body. In the second 
integral the contour of integration is deformed above the pole in the complex k-plane, 
to conform with the radiation condition. 

The complete second-order potential includes, in addition to (6), a solution of the 
homogeneous free-surface boundary condition which cancels the normal velocity on 
the body induced by (6). This ‘homogeneous’ component of the second-order 
solution is similar in form to the first-order scattered potential, except that the 
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wavenumber K is replaced in the free-surface condition by 4K. It follows that the 
effects of the homogeneous component are confined to an exponentially small layer 
near the free surface, and for this reason i t  is not significant in the analysis to follow. 

An asymptotic expansion of (6) can be derived for large (negative) values of the 
vertical coordinate z, by expanding the factor l l ( k - 4 K )  in powers of k and 
integrating term-by-term. Neglecting contributions which are exponentially small, it 

where the transform lom cos (Icu) e-lCv dk = v/(d + v2)i 

has been used. 
Equation (7) provides a representation of the particular solution (6) in terms of 

vertical dipoles and higher-order multipoles on the free surface. For large values of 
Iz( the terms in the integrand are O(z-(-+l)) ; if the integral of q(z) over the complete 
free surface is finite, the leading term in (7) is O(2-l). In this context the far-field 
behaviour of the quadratic forcing function is critical. 

Far downstream, as x + + m ,  the first-order solution is a monochromatic 
transmitted wave with no second-order component. It is easy to confirm that ( 5 )  
vanishes in this limit. On the other hand as x+-m the first-order solution is a 
partial standing wave of the form 

where a is the reflection coefficient. Substituting this result into ( 5 )  it follows that 

q - -4iwKA2h e -4KC (x+-m) (9) 
where C is a constant. From the free-surface condition (4), C is equivalent to the 
constant part of the second-order potential far upstream, i.e. the second-order partial 
standing wave. 

Neglecting a local component which vanishes a t  infinity in both directions, the 
quadratic forcing function can be represented by 

q(z) = -4KCH(-X), (10) 

where H ( x )  denotes the Heaviside unit step function. Substituting this result in (7) 
and integrating over the extended domain of the free surface, including any portion 
interior to the body, gives the leading contribution from the dipole term (m = 0) in 

The error due to neglecting the local component of q can be estimated in the 
following manner. The first-order potential can be approximated for large values of 
1x1 in terms of elementary plane waves plus a local (evanascent) component. The 
latter is asymptotic to a vertical Rankine dipole, of order (2-') in the far field. Thus 
the integral of the local component of q over the entire free surface is finite, and the 
error from neglecting this contribution in (7) is O(2-l). In the absence of a more 
complete analysis which evaluates the local component, there is no point in including 
the higher-order terms (m 2 1) in (7). 
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Equation (1 1) can be interpreted as the potential due to a vortex at the origin. The 
constant is such that this potential vanishes far downstream, where there is a 
progressive transmitted wave. Far upstream (11) is asymptotic to the constant C 
associated with the partial standing wave. For field points near the diffracting body, 
such that lzl B- 1x1, the potential q52 is precisely the average of the two far-field limits. 
For sufficiently large depths this second-order potential will dominate the first-order 
component. 

3. Three-dimensional analysis 

satisfies the far-field radiation condition 
For a three-dimensional body of arbitrary form, the first-order scattered potential 

4; - Af(0) (Kr)feKzPiKr (Kr 9 1).  (12) 

Here r ,  0 are polar coordinates about the vertical axis, and f(0) describes the angular 
dependence of this potential in the far field. 

The quadratic forcing function q includes contributions from cross-products of the 
incident and scattered potentials, and products of the scattered potential with itself. 
(For the case of infinite depth there is no contribution from the incident wave alone.) 
In the far field, where (12) is valid, the cross-product component is O((Kr)- t ) ,  whereas 
products of the scattered potential with itself are O((Kr)- l ) .  (In fact, the latter 
component in ( 5 )  vanishes to this order, and the leading-order contribution is 
O((Kr)-2).) Thus the dominant forcing function in the far field is associated with 
cross-terms between the incident and scattered potentials. Only the first term on the 
right-hand side of (5) contributes when (2) and (12) are substituted, and the far-field 
approximation of the quadratic forcing function is defined in polar coordinates as 

* (13) 

Here F(0)  = -2iK2A2f(8) (1 -cos0), and 0 = 0 is the direction of incident-wave 
propagation. Note that F ( 0 )  = 0, in accordance with the fact that the scattered wave 
is purely progressive along the ray 0 = 0, whereas the forcing function is non-zero 
and non-oscillatory along the ray 0 = z. The error in (13) is a factor 1 +O((Kr) - l ) .  

A particular solution analogous to (2) can be derived using Fourier-Bessel 
transforms, in the form 

q(r,  0) N - 2iK2Alf(0) (1  - cos 6 )  (Kr)-fe-iKz-iKr = ~ ( 8 )  ( ~ ~ 1 - t  e-ilir(l+cos 8) 

q5* = &JJVdSJOrn& ekZJo[k(r2+p2-2rpcos (0-a));]  d k  

(cf. Wehausen & Laitone 1960, equation 21.4, with a correction in sign). Here J ,  is the 
Bessel function of the first kind, and the contour in the single integral is deformed 
to pass above the pole. The surface integral is over the free surface, i.e. the portion 
of the plane z = 0 exterior to the body. 

Proceeding as in $2, an asymptotic expansion of (14) can be derived by expanding 
the factor k/(k-4.K) in powers of k and integrating term by term. Neglecting 
contributions which are exponentially small, 
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where R = (r2 + z2): denotes the spherical radius and the transform 

Jo(ku) e-ku dk = (u2 + w2)-i 
has been used. 

Equation (15) provides a representation of the particular solution (14) in terms of 
vertical dipoles and higher-order multipoles on the free surface. For large values of 
Iz( the terms in this expansion are O(zwm).  The leading-order contribution, of order 

(am 

z- l ,  is 

If the far-field approximation (13) is substituted in (16) and integrated over the 
entire plane z = 0, 

The error in this approximation is estimated below, following (20). 
If the variable p in (17) is resealed in terms of R, the argument of the exponential 

function is proportional to the large parameter KR. Thus the second integral in (17)  
can be evaluated by the method of stationary phase, with the result 

There is no contribution from the stationary point a t  a = 0, since F(0)  = 0. After 
evaluating the last integral i t  follows that 

For field points close to the vertical axis, 

The error in (17)-(20) may be estimated by considering the error 9" in (13), and the 
corresponding contribution 62 in (16). The free-surface integral may be decomposed 
into two parts, separated by a circular partition at a fixed radius p = M which is 
sufficiently large to permit the use of the far-field approximations (12) and (13) when 
p > M .  In the inner integral piq is bounded, and an application of the mean-value 
theorem indicates that this integral gives a contribution to J2 of order M k 2 .  In the 
outer integral 9" = O((Kr)- i ) ,  and an analysis similar to (17) and (18) may be 
performed with the resulting contribution to $2 of order z-2 log (Mlz).  Thus (19) and 
(20) are consistent asymptotic approximations of the second-order potential. 

An alternative to the above analysis follows from (14) by using the addition 
theorem for the Bessel function (cf. Wehausen & Laitone 1960, equation 21.5), 
integrating first in the radial direction between p = 0 and 00, then using the 
stationary-phase approximation, and finally approximating the remaining integral 
in k by Watson's Lemma. This approach leads to the Fourier series 
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where e0 = 1, and E, = 2 for n 2 1.  As r + 0 with z < 0, the factor r / ( R  - z )  + r/2(z( .  
The equivalence of (19) and (21) can be verified directly (cf. Gradshteyn & Ryzhik 
1965, equation 1.447(3)). This Fourier series is useful for evaluating the pressure force 
on an axisymmetric body. 

4. Finite depth 
For a fluid of constant finite depth h the wavenumber K is modified, the incident- 

wave potential contains a second-order component, and the second term on the right- 
hand side of (5) gives a non-vanishing contribution in the far field. However, these 
modifications are not significant if the depth exceeds about one wavelength. The 
modification of the last integral in (6) or (14) is more important, with the exponential 
dependence on the vertical coordinate replaced by hyperbolic functions (cf. 
Wehausen & Laitone 1960, equation 21.10). The three-dimensional analysis is 
facilitated by using the alternative approach which leads to (21), and after 
performing the integration over the free surface it follows that 

(22) 
ix/4 m coshk(z+h) F(n)e J,(kr) dk. 

k sinh kh - 4K cosh kh 
€,( -)" cosne 

(27c)iK 12-o 
$2 - 

Assuming both the depth h and submergence lzl to be large, the leading-order 
contribution is from the vicinity of k = 0 and the first term in the denominator of the 
integrand can be neglected. The resulting integral transform is complicated, 
however, and our attention is restricted to  the special case r = 0, where 

(23) 
F(R)~'" '~  [m ;;I - cosec - 
4(27c)iK2z 2h 

- - F ( x )  eiXI4 cosh k(z + h)  dk 
" (2x ) i4K2  lo cosh kh 

(cf. Gradshteyn & Ryzhik 1965, equation 3.511(4)). The factor in square brackets, 
which represents the correction to (20) for finite depth, increases from one when 
lzl 4 h to in when z = - h. 

The effect of finite depth is less important in two dimensions. Following a similar 
extension with (9) substituted in (6)  gives a delta-function S(k) for the first integral; 
since the hyperbolic functions in (22) are irrelevant when k = 0, the leading-order 
solution (11) is not affected by the finite depth. 

5. The sum-frequency solution 
In  second-order spectral analysis i t  is necessary to consider the interaction 

between two wave components with frequencies w j ,  wl and corresponding wave- 
numbers K,, K , .  In  addition to second-harmonic terms oscillatory with frequencies 
2wj, 2w,, the second-order potential, pressure, and force include a 'sum-frequency ' 
component with frequency wj+w, ,  as emphasized by Kim & Yue (1988). Assuming 
wj  $. wl ,  the interaction between the incident and scattered waves is relatively weak 
in the far field, but as the difference wj-wI+O a stronger interaction occurs 
analogous in the limit to the pure second harmonic. 

To analyse the sum-frequency component in three dimensions, assume that the 
first-order incident-wave potential (2) corresponds to ( w j ,  K j )  and the scattered 
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potential (12) to (wz,Kl). The far-field free-surface boundary condition (4) is then 
modified as follows : 

q52z-4KjLq52 - -iKjK,(l + w , / w j ) A j A , f , ( B )  (1-cos8) (K1~)-ie-iKjZ-iKir 

= Fjl(e)  ( K ,  y)-ie-iKjrCOSo-iK,r ( 2  = O ) ,  (24) 

where Kj,  = (w j  + ~ , ) ~ / 4 g ,  and I$,( 6) = - iKjK,( 1 + w,/w,)  A j  f,(B) ( 1 - cos 0). 
A solution analogous to (17) can be derived, with the principal modification that 

the exponential function is replaced by exp ( - ip(Kj cos a +K,)).  The points of 
stationary phase are unchanged, with the result 

where S = ( K j - K l ) .  
In  the special case r = 0 the integral in (25)  can be evaluated to give 

where the modified Bessel functions 11, Kl and the modified Struve function L, are 
all of argument IxSl. Note that as S+O, with x fixed, (26) tends to the limiting value 
(20) for a single wave component, with d2 of order 2-l. On the other hand, if lzSl % 1, 
the factor in square brackets is of order z - ~ & ' .  Thus the sum-frequency pressure 
attenuates more rapidly with depth than the monochromatic second harmonic. This 
is to be expected, since the dominant second-harmonic component is associated with 
the coincidence in (13) between the incident and scattered waves, such that the sum 
of their vector wavenumbers is zero, and this condition cannot be satisfied if the 
respective frequencies differ. 

6. Applications 
Comparisons will be made with the two-dimensional experiments of Johansson 

(1989), and with the axisymmetric three-dimensional computations by Kim & Yue 
(1988). I n  both cases we consider only the contributions to  the second-order pressure 
and force associated with the particular solution of the inhomogeneous free-surface 
condition. 

Johansson (1989) reports measurements on a fixed rectangular cylinder. 
Dimensional data are given for a section of width 1.99 m, draught 0.154 m and beam 
0.615 m, in a fluid of depth 0.769 m. Only one data point is given for the second- 
harmonic vertical force, in waves of period 0.87 s and amplitude A = 0.024 m. At this 
condition the measured force is between 36 and 37 N, or 18-18.5N/m width. 
(The indicated range of uncertainty is associated with reading the value from 
Johansson's figure 5.17, and does not account for estimates of the experimental 
errors.) From the theory in $2 the same force is calculated by integrating over 
the cylinder bottom the second-order pressure p ,  = -2iwpq5, - pw2A2R. (Since the 
arctangent in (11) is asymmetric with respect to  an origin a t  the midpoint of 
the cylinder it does not contribute to  the vertical force.) For the same condition the 
theoretical value of the reflection coefficient is 0.997, giving a predicted second- 
harmonic vertical force from the above equation of 18.4N/m. This nearly perfect 
agreement suggests the utility of the present theory. 

More extensive comparisons can be made with the computations performed by 
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FIGURE 1.  Approximation for the second-order, second-harmonic pressure distribution on a vertical 
axisymmetric cylinder as a function of depth, on the weather side (0 = n, upper curve) and the lee 
side (0 = 0, lower curve). These results are for a cylinder of draught 4u, where u is the radius, and 
Ku = 1.52. The pressure is normalized by the quantity pgAa/u. The crosses denote the corresponding 
results from the numerical solution by Kim & Yue (1988). 

0 1 2 3 4 

Ka 

FIGURE 2. Second-order, second-harmonic vertical force on the cylinder (see figure 1). The force is 
normalized by the quantity pguA2. The crosses denote the corresponding results from the numerical 
solution by Kim & Yue (1988). 

Kim & Yue (1988). These are for the second-order distribution and vertical force 
acting on a circular cylinder of radius a and draught d = 4a, in a fluid of finite depth 
equal to twice the cylinder draught. 

Since the asymptotic analysis is based on the assumption of large draught, the 
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FIQURE 3. Attenuation factor for the sum-frequency pressure on the cylinder axis, in the presence 
of two incident waves with wavenumbers K,,K, and frequencies w I , w 2 ,  as a function of the 
wavenumber difference and depth z. The cylinder draught is 4a, and the sum of the two frequencies 
is fixed at  the non-dimensional value (wl + w 2 )  (a /g) i  = 2.1 1. The crosses denote the corresponding 
results for the vertical pressure force acting on the bottom of the cylinder, based on the numerical 
solution by Kim & Yue (1988). 

first-order scattering function f(0) can be evaluated from the analytic solution for a 
bottom-mounted cylinder (cf. Mei 1983). It follows that 

where H ,  = Jn-iYn is the Hankel function of the second kind and primes denote 
differentiation with respect to the argument. 

Figure 1 shows the vertical distribution of the second-order pressure along the 
weather (0 = x) and lee (0 = 0) sides of the cylinder, including both the approximate 
result based on (19) and numerical computations of Kim & Yue (1988). (Only the 
component evaluated by Kim & Yue from the inhomogeneous free-surface boundary 
condition is included, since this is dominant in the regime where the present 
approximations are useful.) The comparison is satisfactory on the weather side of the 
cylinder, where the second-order pressure is relatively large. 

Another example is based on the use of (21) to evaluate the vertical pressure force 
on the bottom of the cylinder. Only the term with n = 0 contributes, and after 
evaluating the pressure from Bernoulli’s equation it follows that 

F, = - 2iwp Jr d0 J: $ 2 ( ~ ,  0) r dr  
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The result is shown in figure 2, and compared to the corresponding computations 
made by Kim & Yue. The agreement is precise for the two lowest frequencies, but a t  
higher frequencies the approximate results exceed the numerical computations by 
10-20 YO. Despite this small difference there is a striking agreement in the frequency 
dependence, confirming the importance of the far-field scattering amplitude factor 

Finally, we show in figure 3 the magnitude of the attenuation factor for the sum- 
frequency vertical force, based on the approximation (26) for the pressure on r = 0. 
(The result shown here is based on forming a symmetric pressure matrix from (26), 
ip(w, + w , )  [ h ( w , ,  0,) +#2(w,, w,)], and normalizing this pressure by the limiting value 
when w, = w,.)  Also shown in this figure are the corresponding ratios of the vertical 
pressure forces computed by Kim & Yue. As the difference in frequencies and 
wavenumbers increases, the approximation based on (26) decreases algebraically, as 
anticipated above. On the other hand, the numerical results appear to decrease 
exponentially, suggesting that the approximation (26) is useful only for small values 
of 6. It is clear that (26) is not a consistent asymptotic approximation, for larger 
values of 6, since its order of magnitude, O ( Z - ~ ) ,  is comparable with the neglected 
terms in (16) and (17). 

m)- 

7. Discussion 
The approximation which has been derived leads to a simple description of the 

second-harmonic pressure field in the neighbourhood of a two- or three-dimensional 
diffracting body. The essential steps in the analysis are to consider only the 
contribution to the inhomogeneous free-surface boundary condition from the far- 
field approximation of the quadratic forcing function, and to integrate this effect 
over the entire free surface. The result is shown to be a consistent asymptotic 
approximation, to leading order. In  the two-dimensional case the pressure field near 
the body is equal to half of the corresponding constant pressure in the partial 
standing wave upstream. In  the three-dimensional case the second-harmonic 
pressure is inversely proportional to depth, with a magnitude proportional to the 
first-order scattered wave in the direction opposite to the incident-wave propagation. 

The second-order potential which has been derived here is a particular solution, 
intended only to satisfy Laplace’s equation and the inhomogeneous free-surface 
boundary condition in the far field. To this solution should be added a homogeneous 
component so as to satisfy the homogeneous Neumann boundary condition on the 
body surface. However, the particular solution varies slowly in space, and its spatial 
gradient is one order of magnitude smaller than the potential itself; thus the pressure 
field is not affected to leading order by the additional homogeneous component of the 
solution. In effect, the particular solution leads to a pressure field not unlike the 
hydrostatic component, with little effect on the integrated force for small bodies (or 
subelements of structures) which are totally submerged. The practical effects are 
much greater for floating bodies, particularly if they are restrained in the vertical 
direction. 

No regard has been given to the radiation condition of outgoing waves at infinity. 
Similarly, integral transforms have been used to derive the solution without 
considering the integrability of the quadratic forcing function q. A possible 
justification is to assume that the frequency w and wavenumber K = w2/g are 
complex, with a vanishingly small imaginary component which is negative. This 
modification of the physical parameters is consistent with the requirement of an 
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initial state of rest at t = - 00, and it also renders the quadratic forcing function 
asymptotically small as r -+a, thus overcoming any questions regarding the 
interpretation of (6) or (14). However, this modification results in an incident-wave 
potential (2) with exponentially large amplitude at x = - 00 ; one can argue that this 
is irrelevant within a finite domain including the diffracting body, and that such a 
disturbance is physically realizable in a finite wave tank. A more detailed 
mathematical justification is given by Wang (1987), within the framework of an 
initial-value problem. 

Comparisons with limited experimental data and more complete numerical 
solutions indicate that our approximation is useful in describing the second- 
harmonic vertical force on a two-dimensional cylinder, and the dominant part of the 
pressure distribution and vertical acting on a three-dimensional axisymmetric 
cylinder at  depths comparable with or larger than the radius. It remains to be shown 
that useful predictions can also be made for non-compact bodies, such as tension-leg 
platforms, where exact numerical predictions are not available for comparison. 

This work was supported by the Office of Naval Research and by the National 
Science Foundation. 
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